Cr-Ni-Mo austenitic stainless steels contain Mo to increase resistance to pitting corrosion. "L" grades with low carbon content, are preferred for applications involving uses at sensitization temperatures, such as welding because chromium carbides precipitation is prevented, then, their resistance to intergranular corrosion is increased.

Chemical composition:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>≤0.030</td>
<td>≤0.75</td>
<td>≤2.00</td>
<td>≤0.040</td>
<td>≤0.030</td>
<td>16.00-18.00</td>
<td>10.00-12.00</td>
<td>2.00-2.50</td>
</tr>
</tbody>
</table>

Applications:
- Chemical and petrochemical industries
- Food, pharmaceutical and textile industries
- Architectural decoration
- Welding applications
- Tubes and boilers
- Vehicle tanks

Mechanical properties after cold rolling and final annealing:

- Rp0.2 > 240 N/mm²
- Rm 540 - 620 N/mm²
- Elongation > 45%
- Hardness < 200 HB

Physical properties:

At 20°C it has a density of 8 kg/dm³ and a specific heat of 500 J/kg·K.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>20°C</th>
<th>100°C</th>
<th>200°C</th>
<th>300°C</th>
<th>400°C</th>
<th>500°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus of elasticity (GPa)</td>
<td>200</td>
<td>194</td>
<td>186</td>
<td>179</td>
<td>172</td>
<td>165</td>
</tr>
<tr>
<td>Mean coefficient of linear expansion between 20°C (10⁻⁶ x K⁻¹) and 16°C</td>
<td>-</td>
<td>16</td>
<td>16.5</td>
<td>17</td>
<td>17.5</td>
<td>18</td>
</tr>
<tr>
<td>Thermal conductivity (W/m·K)</td>
<td>15</td>
<td>16</td>
<td>17.5</td>
<td>19</td>
<td>21</td>
<td>22.5</td>
</tr>
<tr>
<td>Electrical resistivity (Ω·mm²/m)</td>
<td>0.75</td>
<td>0.82</td>
<td>0.95</td>
<td>1.05</td>
<td>1.12</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Welding:

The recommended consumable electrodes are:

<table>
<thead>
<tr>
<th>Shielded electrodes</th>
<th>Wires and rods</th>
<th>Hollow electrodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 19 12 3 L</td>
<td>G 19 12 3 L (GMAW)</td>
<td>T 19 12 3 L</td>
</tr>
<tr>
<td>ER 316L (Si)</td>
<td>W 19 12 3 L (GTAW)</td>
<td>ER 316L (Si)</td>
</tr>
<tr>
<td>ER 317L (Si)</td>
<td>P 19 12 3 L (PAW)</td>
<td>ER 317L (Si)</td>
</tr>
<tr>
<td></td>
<td>S 19 12 3 L (SAW)</td>
<td></td>
</tr>
</tbody>
</table>

Stress corrosion cracking can happen in austenitic stainless steels when they are subject to tensile stresses in chloride containing media and temperatures above 60°C.
ACX 240 Cr-Ni-Mo austenitic stainless steel shows higher resistance than Cr-Ni grades against generalized and atmospheric corrosion. It exhibits a corrosion rate lower than 0.10 mm/year when in contact with the following media:

- 20% phosphoric acid at boiling temperature.
- 20% sulphuric acid at room temperature.
- 60% tartaric acid at 80°C.
- 50% acetic acid at boiling temperature.
- 100% formic acid at 60°C.
- Beer.
- Milk.
- 100% oleic acid at 180°C.
- Petrol.

ACX 240 is more resistant to pitting and crevice corrosion than ACX 120. Conventional Cr-Ni stainless steels can be used in chloride media containing up to 200 ppm, while those of the Cr-Ni-Mo group can be used in contact with solutions up to 1000 ppm of chloride ions.

ACX 240 is recommended for applications involving continuous work between 450 and 850°C or welding operations, because of its low carbon content, in order to minimize sensitization.

The maximum service temperature in continuous application is 920°C. For intermittent thermal cycles, the maximum service temperature is 870°C.

Wash the surface with neutral soap and water applied with a cloth or a brush without scratching the stainless steel. Then, always rinse the stainless steel with water to remove completely the cleaning agent. Finally, it is recommended to dry the surface to preserve a good superficial condition. In severe environments, a frequent cleaning is strongly recommended.

ACX 240 austenitic stainless steel is included in the main international standards.

These stainless steels can be supplied according to EN, ASTM, ASME, AMS, QQS and MILS standard requirements.

ACX 240 is approved in compliance with:
- PED (Pressure Equipment Directive) according to EN 10028-7 and AD 2000 Merkblatt W2 and W10.
- Lloyd’s Register of Shipping.

ACX 240 complies with the European Directives:
- Hexavalent chromium, ROHS.
- Electrical instruments, ROHS.